trans-2,5-Dimethylcyclopentane-1,1-dicarboxylic Acid

By Niek van der Putten, Rina T. Kops, Jan Bode and Henk Schenk
Laboratory for Crystallography, University of A msterdam, Nieuwe A chtergracht 166, Amsterdam, The Netherlands

(Received 29 July 1977; accepted 5 September 1977)

Abstract

C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}\), triclinic, $a=10.742$ (3), $b=$ 7.658 (2), $c=7.150$ (2) $\AA, \quad a=58.51$ (3), $\beta=$ 85.80 (4), $\gamma=78.42$ (4) ${ }^{\circ}, Z=2$, space group $P 1$. The crystal structure consists of infinite chains of molecules along the x axis, held together by hydrogen bonds. The conformation of the molecule is similar to that of its cis isomer.

Introduction. Approximately 1550 independent reflections were measured by means of a Nonius CAD-4 diffractometer using monochromatized CuKar radiation. Of these, 1472 were above the significance level of 3σ. Intensity statistics point to a centrosymmetric space group.

The structure determination has been tackled by the interactive direct-methods program system SIMPEL (Schenk, Overbeek \& van der Putten, 1976). However, the negative-quartet criterion (Schenk, 1974), the Harker-Kasper criterion (Schenk \& de Jong, 1973) and the Σ_{2} consistency index selected only those Σ_{2} solutions in which all $h h l$ reflections were signed minus and all $h \bar{h} l$ reflections plus. Ignoring these incorrect solutions, from those remaining the Harker-Kasper criterion indicated the correct solution.

The structure has been refined by a conventional block-diagonal least-squares procedure in the course of which the H atoms were located. The final R value was

Fig. 1. Numbering of the atoms.

Table 1. Fractional coordinates $\left(\times 10^{4}\right.$, for $\left.\mathrm{H} \times 10^{3}\right)$

	x	z	
$\mathrm{C}(1)$	$2493(2)$	$8796(3)$	$-1542(3)$
$\mathrm{C}(2)$	$2344(2)$	$10026(3)$	$-330(3)$
$\mathrm{C}(3)$	$3352(2)$	$8687(4)$	$1545(3)$
$\mathrm{C}(4)$	$3479(2)$	$6450(4)$	$2139(4)$
$\mathrm{C}(5)$	$2708(2)$	$6477(3)$	$387(3)$
$\mathrm{C}(6)$	$1360(2)$	$9340(3)$	$-3009(3)$
$\mathrm{C}(7)$	$3629(2)$	$9278(3)$	$-3023(3)$
$\mathrm{C}(8)$	$2421(2)$	$12318(4)$	$-1689(4)$
$\mathrm{C}(9)$	$1458(2)$	$5733(3)$	$1258(4)$
$\mathrm{O}(1)$	$394(1)$	$10585(2)$	$-3208(2)$
$\mathrm{O}(2)$	$1513(1)$	$8286(2)$	$-4011(3)$
$\mathrm{O}(3)$	$4700(1)$	$8157(2)$	$-2352(2)$
$\mathrm{O}(4)$	$3404(1)$	$10910(2)$	$-4928(2)$
$\mathrm{H}(1)$	$151(2)$	$992(4)$	$29(4)$
$\mathrm{H}(2)$	$416(2)$	$909(4)$	$112(4)$
$\mathrm{H}(3)$	$305(2)$	$891(4)$	$278(4)$
$\mathrm{H}(4)$	$306(3)$	$580(5)$	$352(5)$
$\mathrm{H}(5)$	$442(3)$	$572(4)$	$213(5)$
$\mathrm{H}(6)$	$322(2)$	$560(3)$	$-11(3)$
$\mathrm{H}(7)$	$223(2)$	$1289(4)$	$-74(4)$
$\mathrm{H}(8)$	$326(2)$	$1253(4)$	$-230(4)$
$\mathrm{H}(9)$	$165(2)$	$1316(4)$	$-292(4)$
$\mathrm{H}(10)$	$96(2)$	$668(4)$	$172(4)$
$\mathrm{H}(1)$	$162(3)$	$446(4)$	$248(5)$
$\mathrm{H}(12)$	$101(2)$	$583(4)$	$4(4)$
$\mathrm{H}(13)$	$78(3)$	$861(4)$	$-490(5)$
$\mathrm{H}(14)$	$423(4)$	$1135(7)$	$-619(8)$

5.0% with isotropic thermal parameters for the H atoms and anisotropic for the others. Table 1 contains the positional parameters.* The atom numbering is in Fig. 1.

Discussion. In dicarboxylic acids a large value for the ratio of the dissociation constants K_{1} / K_{2} is an indication of intramolecular hydrogen bonding. The ratios for cis- and trans-2,5-dimethyl-cyclopentane-1,1dicarboxylic acid are 5.4×10^{6} and 2.5×10^{3} respectively (Verbrugge, 1969). However, in monoclinic crystals of the cis isomer only intermolecular hydrogen bonds were found (Kops \& Schenk, 1974). The present

[^0]study was carried out in order to determine the hydrogen-bond scheme of the trans compound and the similarities between the conformations of both isomers.

The molecules are arranged in infinite strings along the x axis and are held together by intermolecular hydrogen bonds [2.643 (2) and 2.645 (2) \AA] between molecules related by inversion centres at $(0.0,1 \cdot 0$, -0.5) and ($0.5,1.0,-0.5$) respectively.
The bond lengths of the trans isomer are equal, within the limits of accuracy, to those of the cis isomer. The lengths $C(1)-C(2)$ and $C(1)-C(5)$ are rather large probably as a result of the steric interactions of the substituents at $\mathrm{C}(1), \mathrm{C}(2)$ and $\mathrm{C}(5)$ (see Table 2). Bond angles are in Table 3.
The dihedral angles in the cyclopentene ring are 40 , $-30,9,16$ and -35° for $\mathrm{C}(1)-\mathrm{C}(2), \mathrm{C}(2)-\mathrm{C}(3)$ etc., indicating that the ring is in a conformation between an envelope and a half-chair. Similar dihedral angles were found in the cis isomer (Kops \& Schenk, 1974).

Table 2. Bond lengths (\AA) with standard deviations

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.561(4)$	$\mathrm{C}(5)-\mathrm{H}(6)$	$0.97(2)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.560(2)$	$\mathrm{C}(6)-\mathrm{O}(1)$	$1.220(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.510(3)$	$\mathrm{C}(6)-\mathrm{O}(2)$	$1.314(4)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.526(2)$	$\mathrm{C}(7)-\mathrm{O}(3)$	$1.243(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.533(3)$	$\mathrm{C}(7)-\mathrm{O}(4)$	$1.274(2)$
$\mathrm{C}(2)-\mathrm{C}(8)$	$1.515(3)$	$\mathrm{C}(8)-\mathrm{H}(7)$	$0.98(4)$
$\mathrm{C}(2)-\mathrm{H}(1)$	$0.97(3)$	$\mathrm{C}(8)-\mathrm{H}(8)$	$0.98(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.512(4)$	$\mathrm{C}(8)-\mathrm{H}(9)$	$1.08(2)$
$\mathrm{C}(3)-\mathrm{H}(2)$	$0.96(3)$	$\mathrm{C}(9)-\mathrm{H}(10)$	$1.00(3)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$1.01(3)$	$\mathrm{C}(9)-\mathrm{H}(11)$	$0.90(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.541(4)$	$\mathrm{C}(9)-\mathrm{H}(12)$	$0.97(3)$
$\mathrm{C}(4)-\mathrm{H}(4)$	$0.97(3)$	$\mathrm{O}(2)-\mathrm{H}(13)$	$0.95(3)$
$\mathrm{C}(4)-\mathrm{H}(5)$	$1.05(3)$	$\mathrm{O}(4)-\mathrm{H}(14)$	$1.18(5)$
$\mathrm{C}(5)-\mathrm{C}(9)$	$1.526(3)$		

Table 3. Bond angles $\left({ }^{\circ}\right)$ of the non-hydrogen atoms

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	102.8 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	107.3 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	114.0 (1)	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	104.1 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	109.9 (2)	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(9)$	112.2 (1)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(6)$	112.0 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	111.8 (2)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(7)$	112.2 (1)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	123.9 (2)
C(6)-C(1)-C(7)	106.1 (1)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(2)$	112.7 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	102.3 (2)	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{O}(2)$	123.4 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(8)$	117.4 (2)	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(3)$	120.9 (1)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(8)$	114.7 (2)	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(4)$	115.6 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.4 (2)	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{O}(4)$	123.5 (2)

The carboxylic group $\mathrm{C}(6) \mathrm{O}(1) \mathrm{O}(2)$ has the usual conformation, the $\mathrm{C}=\mathrm{O}$ bond eclipsing a bond of the ring. For the other COOH group this conformation is sterically impossible and $O(3)$ is rotated by 20° out of the eclipsed position. In the cis isomer this rotation is 30° indicating a somewhat larger steric hindrance.

The authors thank Professor F. Bickelhaupt and Dr P. A. Verbrugge for providing the crystals. Mr D. Heijdendrijk carried out the X-ray measurements.

References

Kops, R. T. \& Schenk, H. (1974). Cryst. Struct. Commun. 3, 665-668.
Schenk, H. (1974). Acta Cryst. A 30, 477-481.
Schenk, H. \& de Jong, J. G. H. (1973). Acta Cryst. A29, 31-34.
Schenk, H., Overbeek, A. r. \& van der Putten, N. (1976). Amer. Cryst. Assoc. Abstr. Pap. 4, 64. Verbrugge, P. A. (1969). Thesis, Free Univ., Amsterdam.

Acta Cryst. (1978). B34, 323-326

Diaveridine: 2,4-Diamino-5-($\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-dimethoxybenzyl)pyrimidine*

By Thomas F. Koetzle and Graheme J. B. Williams \dagger
Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 3 June 1977; accepted 1 September 1977)

Abstract

C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}, M_{r}=260 \cdot 92\), crystallizes from wet ethanol in the monoclinic space group $C 2 / c, a=$ 18.140 (5), $b=12.796$ (3), $c=12.332$ (3) $\AA, \beta=$ $114.78(1)^{\circ} . D_{c}$ (for eight molecules in the cell of

^[* Research performed at Brookhaven National Laboratory under contract with the US Department of Energy and supported by its Division of Basic Energy Sciences. \dagger Author to whom correspondence should be addressed.]

volume $2598.93 \AA^{3}$) $=1.169 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved with MULTAN and refined by full-matrix least-squares techniques based upon 1838 unique F_{o}^{2} terms to yield agreement factors $R=0.057$ and $R_{w}=$ 0.089 . The pyrimidine bases are linked together in infinite ribbons by hydrogen bonds involving the amino groups and ring-nitrogen atoms. Both methyl C atoms are approximately coplanar with the phenyl ring. The ether O atom bound to $\mathrm{C}\left(3^{\prime}\right)$ is positioned $3.47 \AA$

[^0]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32971 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars. Chester CH1 1NZ, England.

